Notes - MCS
Identification, Authentication and Authorization
Notes - MCS
Identification, Authentication and Authorization
  • Identification, Authentication and Authorization
  • Access Control Models
    • Access types
    • Least privilege principle
    • Access control models
      • Access control kinds
    • Access control kinds
    • Separation of duties
    • Segregation of duties
    • Information flow models
    • Multilevel security
    • Windows mandatory integrity control
    • Clark-Wilson Integrity Model
  • OAuth 2.0 Authorization Framework
    • Goal
    • Roles (RFC 6749)
    • Communication endpoints
    • Application (client)
    • OAuth tokens
    • OAuth flows
      • Code flow
      • Implicit flow
      • Resource owner password flow
      • Client credentials flow
    • Proof Key for Code Exchange (PKCE, RFC 7636)
    • Device authorization grant (RFC 8628)
    • Actual protocol flow
  • Linux Security Mechanisms
    • Mechanisms
    • Linux management privileges
    • Privilege Elevation
    • Capabilities
    • Files extended attributes (xattr)
    • File capabilities
    • Capability transfer across exec
    • Control groups (cgroups)
    • Linux Security Modules (LSM)
    • AppArmor
    • Confinement
  • Authentication Protocols
    • Identity attributes
    • Authentication
    • Authentication interactions
    • Authentication of people
      • Biometrics
      • Token-based OTP generators
      • PAP & CHAP (RFC 1334, 1992, RFC 1994, 1996)
      • S/Key (RFC 2289, 1998)
      • GSM
    • Host authentication
    • Service/server authentication
    • TLS (Transport Layer Security, RFC 8446)
    • SSH (Secure Shell, RFC 4251)
    • Single Sign-On (SSO)
    • Authentication metaprotocols
    • Authentication services
    • Key distribution services
  • PAM (Pluggable Authentication Modules)
    • Motivation
    • PAM
    • PAM APIs
    • Orchestration of PAM actions
    • Module invocation
    • Configuration files
    • PAM orchestration files
    • Scenario 1 – Local authentication
    • Scenario 2 – LDAP auth with local backoff
    • Scenario 3 – MS AD auth with local backoff
  • FIDO and FIDO2 framework
    • FIDO (Fast Identity Online) Alliance
    • Universal 2nd Factor (U2F) protocol
    • WebAuthn
    • Client to Authenticator Protocol (CTAP)
    • Passkeys
  • Authentication with Trusted Third Parties / KDCs
    • Shared-key authentication
    • Key Distribution Center (KDC) concept
    • Kerberos
  • Identity Management
    • Digital Identity
    • Identity Manager (IdM)
    • Identity Provider (IdP)
    • Authoritative source
    • Identity claim
    • Approachs
    • Credential
    • Privacy issues
    • Verifiable credential (VC)
    • Self-Sovereign Identity (SSI)
    • Interoperability
    • eIDAS
  • Anonymity and Privacy
    • Privacy
    • IEEE Digital Privacy Model
    • Privacy with computing technology
    • Privacy and companies
    • Privacy and IAA
    • Identification
    • Authentication
    • Anonymity
    • Microdata privacy issues
    • Microdata privacy enhancing
    • L-Diversity
Powered by GitBook
On this page
  • Namespaces
  • Containers
  1. Linux Security Mechanisms

Confinement

Namespaces

Allows partitioning of resources in views (namespaces).

  • Processes in a namespace have a restricted view of the system.

  • Activated through syscalls by a simple process:

    • clone: Defines a namespace to migrate the process to.

    • unshare: disassociates the process from its current context.

    • setns: puts the process in a Namespace.

Types of Namespaces.

  • Mount: Applied to mount points.

  • process id: first process has id 1.

  • network: "independent" network stack (routes, interfaces...).

  • IPC: methods of communication between processes.

  • uts: name independence (DNS).

  • user id: segregation of permissions.

  • cgroup: limitation of resources used (memory, cpu...).

## Create netns named mynetns
root@vm: ~# ip netns add mynetns

## Change iptables INPUT policy for the netns
root@linux: ~# ip netns exec mynetns iptables -P INPUT DROP

## List iptables rules outside the namespace
root@linux: ~# iptables -L INPUT
Chain INPUT (policy ACCEPT)
target    prot opt source    destination

## List iptables rules inside the namespace
root@linux: ~# ip netns exec mynetns iptables -L INPUT
Chain INPUT (policy DROP)
target    prot opt source    destination

## List Interfaces in the namespace
root@linux: ~# ip netns exec mynetns ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 100
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    
## Move the interface enp0s3 to the namespace
root@linux: ~# ip link set enp0s3 netns mynetns

## List interfaces in the namespace
root@linux: ~# ip netns exec mynetns ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 100
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT...
    link/ether 08:00:27:83:0a:55 brd ff:ff:ff:ff:ff:ff
    
## List interfaces outside the namespace
root@linux: ~# ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT...
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Containers

Explores namespaces to provide a virtual view of the system.

  • Network isolation, cgroups, user ids, mounts, etc...

Processes are executed under a container.

  • Container is an applicational construction and not of the core.

  • Consists of an environment by composition of namespaces.

  • Requires building bridges with the real system network interfaces, proxy processes.

Relevant approaches.

  • LinuX Containers: focus on a complete virtualized environment.

    • evolution of OpenVZ.

  • Docker: focus on running isolated applications based on a portable packet between systems.

    • uses LXC.

Last updated 1 year ago