Notes - MCS
Identification, Authentication and Authorization
Notes - MCS
Identification, Authentication and Authorization
  • Identification, Authentication and Authorization
  • Access Control Models
    • Access types
    • Least privilege principle
    • Access control models
      • Access control kinds
    • Access control kinds
    • Separation of duties
    • Segregation of duties
    • Information flow models
    • Multilevel security
    • Windows mandatory integrity control
    • Clark-Wilson Integrity Model
  • OAuth 2.0 Authorization Framework
    • Goal
    • Roles (RFC 6749)
    • Communication endpoints
    • Application (client)
    • OAuth tokens
    • OAuth flows
      • Code flow
      • Implicit flow
      • Resource owner password flow
      • Client credentials flow
    • Proof Key for Code Exchange (PKCE, RFC 7636)
    • Device authorization grant (RFC 8628)
    • Actual protocol flow
  • Linux Security Mechanisms
    • Mechanisms
    • Linux management privileges
    • Privilege Elevation
    • Capabilities
    • Files extended attributes (xattr)
    • File capabilities
    • Capability transfer across exec
    • Control groups (cgroups)
    • Linux Security Modules (LSM)
    • AppArmor
    • Confinement
  • Authentication Protocols
    • Identity attributes
    • Authentication
    • Authentication interactions
    • Authentication of people
      • Biometrics
      • Token-based OTP generators
      • PAP & CHAP (RFC 1334, 1992, RFC 1994, 1996)
      • S/Key (RFC 2289, 1998)
      • GSM
    • Host authentication
    • Service/server authentication
    • TLS (Transport Layer Security, RFC 8446)
    • SSH (Secure Shell, RFC 4251)
    • Single Sign-On (SSO)
    • Authentication metaprotocols
    • Authentication services
    • Key distribution services
  • PAM (Pluggable Authentication Modules)
    • Motivation
    • PAM
    • PAM APIs
    • Orchestration of PAM actions
    • Module invocation
    • Configuration files
    • PAM orchestration files
    • Scenario 1 – Local authentication
    • Scenario 2 – LDAP auth with local backoff
    • Scenario 3 – MS AD auth with local backoff
  • FIDO and FIDO2 framework
    • FIDO (Fast Identity Online) Alliance
    • Universal 2nd Factor (U2F) protocol
    • WebAuthn
    • Client to Authenticator Protocol (CTAP)
    • Passkeys
  • Authentication with Trusted Third Parties / KDCs
    • Shared-key authentication
    • Key Distribution Center (KDC) concept
    • Kerberos
  • Identity Management
    • Digital Identity
    • Identity Manager (IdM)
    • Identity Provider (IdP)
    • Authoritative source
    • Identity claim
    • Approachs
    • Credential
    • Privacy issues
    • Verifiable credential (VC)
    • Self-Sovereign Identity (SSI)
    • Interoperability
    • eIDAS
  • Anonymity and Privacy
    • Privacy
    • IEEE Digital Privacy Model
    • Privacy with computing technology
    • Privacy and companies
    • Privacy and IAA
    • Identification
    • Authentication
    • Anonymity
    • Microdata privacy issues
    • Microdata privacy enhancing
    • L-Diversity
Powered by GitBook
On this page
  • Removal of potentially unique IDs
  • Noise
  • Truncate
  • K-anonymity
  • Implementation approaches
  • Examples
  • Identifiers
  • Quasi identifiers
  • Sensitive attributes
  • K-anonymity
  1. Anonymity and Privacy

Microdata privacy enhancing

Removal of potentially unique IDs

Basic strategy

  • By removing potentially unique IDs we cannot link microdata items from several databases

Candidate IDs

  • Name

  • National IDs (passport, identity card, etc.)

  • Social Security ID, Tax ID, etc.

  • Phone numbers

  • Car plate numbers

Not enough!

  • A study in the States proved that 87% of its the population could be identified using a link attack using 3 non-unique attributes

    • 5-digit ZIP code, gender and birthday

Noise

Basic strategy

  • Add noise to stored data or to the result of queries

Issues

  • Privacy is achieved at the cost of integrity

Truncate

Basic strategy

  • Do not provide full data, limiting precision

Issues

  • Privacy is achieved at the cost of integrity

  • Difficult to balance usability with privacy

    • Privacy relates to the user providing information, which may not be the user accessing information

K-anonymity

Definition

  • No query can deliver an anonymity set with less than k entries

Privacy-critical attributes

  • (Unique) identifiers

  • Quasi-identifiers

    • When combined can produce unique tuples

  • Sensitive attributes

    • Potentially unique per subject

    • Disease, salary, crime committed

Implementation approaches

Suppression of quasi-identifiers

  • Simple to perform

  • Information loss

Generalization of quasi-identifiers

  • Transformation of quasi-identifiers in other ones less specific

    • e.g. 7-digit ZIP → 4-digit ZIP

    • e.g. ages w/ 1 year granularity → 5 or 10 year granularity

  • There is not a complete loss of information

    • But the generalization should not potentiate wrong data interpretations

  • We must ensure that there are at least k entries with equal generalized quasi-identifiers

Examples

Identifiers

Quasi identifiers

Sensitive attributes

K-anonymity

1st step: Remove unique identifiers

2nd step: Generalization

2-anonymity possible results

3-anonymity possible results

Sensitive attribute disclosure

Last updated 11 months ago