Notes - MCS
Identification, Authentication and Authorization
Notes - MCS
Identification, Authentication and Authorization
  • Identification, Authentication and Authorization
  • Access Control Models
    • Access types
    • Least privilege principle
    • Access control models
      • Access control kinds
    • Access control kinds
    • Separation of duties
    • Segregation of duties
    • Information flow models
    • Multilevel security
    • Windows mandatory integrity control
    • Clark-Wilson Integrity Model
  • OAuth 2.0 Authorization Framework
    • Goal
    • Roles (RFC 6749)
    • Communication endpoints
    • Application (client)
    • OAuth tokens
    • OAuth flows
      • Code flow
      • Implicit flow
      • Resource owner password flow
      • Client credentials flow
    • Proof Key for Code Exchange (PKCE, RFC 7636)
    • Device authorization grant (RFC 8628)
    • Actual protocol flow
  • Linux Security Mechanisms
    • Mechanisms
    • Linux management privileges
    • Privilege Elevation
    • Capabilities
    • Files extended attributes (xattr)
    • File capabilities
    • Capability transfer across exec
    • Control groups (cgroups)
    • Linux Security Modules (LSM)
    • AppArmor
    • Confinement
  • Authentication Protocols
    • Identity attributes
    • Authentication
    • Authentication interactions
    • Authentication of people
      • Biometrics
      • Token-based OTP generators
      • PAP & CHAP (RFC 1334, 1992, RFC 1994, 1996)
      • S/Key (RFC 2289, 1998)
      • GSM
    • Host authentication
    • Service/server authentication
    • TLS (Transport Layer Security, RFC 8446)
    • SSH (Secure Shell, RFC 4251)
    • Single Sign-On (SSO)
    • Authentication metaprotocols
    • Authentication services
    • Key distribution services
  • PAM (Pluggable Authentication Modules)
    • Motivation
    • PAM
    • PAM APIs
    • Orchestration of PAM actions
    • Module invocation
    • Configuration files
    • PAM orchestration files
    • Scenario 1 – Local authentication
    • Scenario 2 – LDAP auth with local backoff
    • Scenario 3 – MS AD auth with local backoff
  • FIDO and FIDO2 framework
    • FIDO (Fast Identity Online) Alliance
    • Universal 2nd Factor (U2F) protocol
    • WebAuthn
    • Client to Authenticator Protocol (CTAP)
    • Passkeys
  • Authentication with Trusted Third Parties / KDCs
    • Shared-key authentication
    • Key Distribution Center (KDC) concept
    • Kerberos
  • Identity Management
    • Digital Identity
    • Identity Manager (IdM)
    • Identity Provider (IdP)
    • Authoritative source
    • Identity claim
    • Approachs
    • Credential
    • Privacy issues
    • Verifiable credential (VC)
    • Self-Sovereign Identity (SSI)
    • Interoperability
    • eIDAS
  • Anonymity and Privacy
    • Privacy
    • IEEE Digital Privacy Model
    • Privacy with computing technology
    • Privacy and companies
    • Privacy and IAA
    • Identification
    • Authentication
    • Anonymity
    • Microdata privacy issues
    • Microdata privacy enhancing
    • L-Diversity
Powered by GitBook
On this page
  • Physical access
  • Informatic or electronic access
  • Definition
  • Normal requirements
  • Subjects and objects
  1. Access Control Models

Access types

Last updated 1 year ago

Physical access

  • Physical contact between a subject and object of interest.

    • Facility, room, network, computer, storage device, authentication token, etc.

Informatic or electronic access

  • Information-oriented contact between a subject and the object of interest.

    • Contact through request-response dialogs.

  • Contact is mediated by:

    • Computers and networks.

    • Operating systems, applications, middleware, devices, etc.

Definition

The policies and mechanisms mediate a subject's access to an object.

Normal requirements

  • Authentication

    • With some Level of Assurance (LoA)

  • Authorization

  • Accountability -> Logging

Subjects and objects

  • Both are digital entities.

  • A subject can be something exhibiting activity:

    • Processes,

    • Computers,

    • Networks.

  • Objects can be the target of an action:

    • Stored data,

    • CPU time,

    • Memory,

    • Processes,

    • Computers,

    • Network.

An entity can be both a subject and an object.