Notes - MCS
Identification, Authentication and Authorization
Notes - MCS
Identification, Authentication and Authorization
  • Identification, Authentication and Authorization
  • Access Control Models
    • Access types
    • Least privilege principle
    • Access control models
      • Access control kinds
    • Access control kinds
    • Separation of duties
    • Segregation of duties
    • Information flow models
    • Multilevel security
    • Windows mandatory integrity control
    • Clark-Wilson Integrity Model
  • OAuth 2.0 Authorization Framework
    • Goal
    • Roles (RFC 6749)
    • Communication endpoints
    • Application (client)
    • OAuth tokens
    • OAuth flows
      • Code flow
      • Implicit flow
      • Resource owner password flow
      • Client credentials flow
    • Proof Key for Code Exchange (PKCE, RFC 7636)
    • Device authorization grant (RFC 8628)
    • Actual protocol flow
  • Linux Security Mechanisms
    • Mechanisms
    • Linux management privileges
    • Privilege Elevation
    • Capabilities
    • Files extended attributes (xattr)
    • File capabilities
    • Capability transfer across exec
    • Control groups (cgroups)
    • Linux Security Modules (LSM)
    • AppArmor
    • Confinement
  • Authentication Protocols
    • Identity attributes
    • Authentication
    • Authentication interactions
    • Authentication of people
      • Biometrics
      • Token-based OTP generators
      • PAP & CHAP (RFC 1334, 1992, RFC 1994, 1996)
      • S/Key (RFC 2289, 1998)
      • GSM
    • Host authentication
    • Service/server authentication
    • TLS (Transport Layer Security, RFC 8446)
    • SSH (Secure Shell, RFC 4251)
    • Single Sign-On (SSO)
    • Authentication metaprotocols
    • Authentication services
    • Key distribution services
  • PAM (Pluggable Authentication Modules)
    • Motivation
    • PAM
    • PAM APIs
    • Orchestration of PAM actions
    • Module invocation
    • Configuration files
    • PAM orchestration files
    • Scenario 1 – Local authentication
    • Scenario 2 – LDAP auth with local backoff
    • Scenario 3 – MS AD auth with local backoff
  • FIDO and FIDO2 framework
    • FIDO (Fast Identity Online) Alliance
    • Universal 2nd Factor (U2F) protocol
    • WebAuthn
    • Client to Authenticator Protocol (CTAP)
    • Passkeys
  • Authentication with Trusted Third Parties / KDCs
    • Shared-key authentication
    • Key Distribution Center (KDC) concept
    • Kerberos
  • Identity Management
    • Digital Identity
    • Identity Manager (IdM)
    • Identity Provider (IdP)
    • Authoritative source
    • Identity claim
    • Approachs
    • Credential
    • Privacy issues
    • Verifiable credential (VC)
    • Self-Sovereign Identity (SSI)
    • Interoperability
    • eIDAS
  • Anonymity and Privacy
    • Privacy
    • IEEE Digital Privacy Model
    • Privacy with computing technology
    • Privacy and companies
    • Privacy and IAA
    • Identification
    • Authentication
    • Anonymity
    • Microdata privacy issues
    • Microdata privacy enhancing
    • L-Diversity
Powered by GitBook
On this page
  • Types of credentials
  • Credential issuers
  • P2P sessions
  1. Identity Management

Self-Sovereign Identity (SSI)

It requires a digital wallet.

  • For keeping digital credentials.

  • Credentials are Verifiable Credentials that can prove to a verifier:

    • Who is the issuer

    • To whom they were issued

    • Whether it has been altered since it was issued

    • Whether it has been revoked by the issuer

Types of credentials

Third-party attested credentials.

  • The credentials a person shows to others to prove their identity attributes.

  • They imply the trust of the credential receiver in the credentials’ issuers.

    • Usually verified through cryptographic means.

Self-attested credentials.

  • What I say about myself.

    • Opinion, preference, consent.

  • Still needs credentials issued by TTPs.

    • To associate identity attributes recognized by others to your opinion, preference or consent.

Credential issuers

They act in response to requests of credentials’ owners.

  • And not the services they access.

They can change/revoke issued credentials at any time.

  • But credential owners can still use them.

  • Revocation verification should not require contact with the credential issuer.

    • Some public repositories must exist (blockchain).

P2P sessions

Each entity possesses a wallet, which contains an asymmetric key pair.

Thus, each pair of entities can establish a secure, P2P “connection”, or “session”. With which they can securely exchange credentials

Last updated 11 months ago