Notes - MIECT
Sistemas Operativos E De Tempo-real
Notes - MIECT
Sistemas Operativos E De Tempo-real
  • Sistemas Operativos e de Tempo-real
  • Basic Concepts About Real-Time Systems
    • Preliminaries
    • Definitions
    • Objective of the Study of RTS
    • Requirements of Real-Time Systems
  • Real Time Model
    • Real Time Model
    • Temporal Control
    • Task states and execution
    • Kernel/RTOS Architecture
      • Time Management Functions
    • Examples of RTOS
  • Practical Class 01
    • Real-Time Services in Linux
    • Using the Linux real-time services
  • Scheduling Basics
    • Basic concepts
    • Scheduling Algorithms
      • Basic algorithms
    • Static Cyclic Scheduling
    • Exercise
  • Fixed Priority Scheduling
    • Online scheduling with fixed priorities
    • Schedulability tests based on utilization
      • Deadline Monotonic Scheduling DM
    • Response-time analysis
  • Practical Class 2
    • Xenomai brief introduction
    • API
    • Developing an application
  • Dynamic Priority Scheduling
    • On-line scheduling with dynamic priorities
    • Analysis: CPU utilization bound
    • Analysis: CPU Load Analysis
    • Other deadline assignment criteria
  • Exclusive Access to Shared Resources
    • The priority inversion problem
    • Techniques for allowing exclusive access
    • Priority Inheritance Protocol
    • Priority Ceiling Protocol
    • Stack Resource Policy
    • Notes
  • Aperiodic Servers
    • Joint scheduling of periodic and aperiodic tasks
    • Aperiodic Servers
    • Fixed Priority Servers
    • Dynamic Priority Servers
  • Limited preemption, release jitter and overheads
    • Non-preemptive scheduling
    • Impact of Release Jitter
    • Accounting for overheads
    • Considerations about the WCET
  • Profiling and Code Optimization
    • Code optimization techniques
      • CPU independent optimization techniques
      • Cache impact
      • Optimization techniques dependent on memory architecture
      • Architecture-dependent optimization techniques
    • Profiling
  • Multiprocessor Scheduling, V1.2
    • Introduction
    • Definitions, Assumptions and Scheduling Model
    • Scheduling for Multicore Platforms
    • Task allocation
Powered by GitBook
On this page
  1. Scheduling Basics

Scheduling Algorithms

PreviousBasic conceptsNextBasic algorithms

Last updated 2 years ago

A scheduling algorithm is a method for solving the scheduling problem.

  • Note: don’t confuse scheduling algorithm (the process/method) with schedule (the result).

Classification of scheduling algorithms:

  • Preemptive vs non-preemptive.

  • Static vs dynamic (priorities).

  • Off-line vs on-line.

  • Optimal vs sub-optimal.

  • With strict guarantees vs best effort.

A short note on temporal complexity

Measurement of the growth of the execution time of an algorithm as a function of the problem size ( e.g. the number of elements of a vector, the number of tasks of a real-time system).

Expressed via the O() operator (big O notation).

O() arithmetic, n=problem dimension, k=constant.