Notes - MIECT
Sistemas Operativos E De Tempo-real
Notes - MIECT
Sistemas Operativos E De Tempo-real
  • Sistemas Operativos e de Tempo-real
  • Basic Concepts About Real-Time Systems
    • Preliminaries
    • Definitions
    • Objective of the Study of RTS
    • Requirements of Real-Time Systems
  • Real Time Model
    • Real Time Model
    • Temporal Control
    • Task states and execution
    • Kernel/RTOS Architecture
      • Time Management Functions
    • Examples of RTOS
  • Practical Class 01
    • Real-Time Services in Linux
    • Using the Linux real-time services
  • Scheduling Basics
    • Basic concepts
    • Scheduling Algorithms
      • Basic algorithms
    • Static Cyclic Scheduling
    • Exercise
  • Fixed Priority Scheduling
    • Online scheduling with fixed priorities
    • Schedulability tests based on utilization
      • Deadline Monotonic Scheduling DM
    • Response-time analysis
  • Practical Class 2
    • Xenomai brief introduction
    • API
    • Developing an application
  • Dynamic Priority Scheduling
    • On-line scheduling with dynamic priorities
    • Analysis: CPU utilization bound
    • Analysis: CPU Load Analysis
    • Other deadline assignment criteria
  • Exclusive Access to Shared Resources
    • The priority inversion problem
    • Techniques for allowing exclusive access
    • Priority Inheritance Protocol
    • Priority Ceiling Protocol
    • Stack Resource Policy
    • Notes
  • Aperiodic Servers
    • Joint scheduling of periodic and aperiodic tasks
    • Aperiodic Servers
    • Fixed Priority Servers
    • Dynamic Priority Servers
  • Limited preemption, release jitter and overheads
    • Non-preemptive scheduling
    • Impact of Release Jitter
    • Accounting for overheads
    • Considerations about the WCET
  • Profiling and Code Optimization
    • Code optimization techniques
      • CPU independent optimization techniques
      • Cache impact
      • Optimization techniques dependent on memory architecture
      • Architecture-dependent optimization techniques
    • Profiling
  • Multiprocessor Scheduling, V1.2
    • Introduction
    • Definitions, Assumptions and Scheduling Model
    • Scheduling for Multicore Platforms
    • Task allocation
Powered by GitBook
On this page
  1. Practical Class 2

API

PreviousXenomai brief introductionNextDeveloping an application

Last updated 2 years ago

Vision and goals.

  • Run API emulation over standard Linux/POSIX.

  • Enable seamless migration between co-kernel and native Linux deployments.

Three real-time APIs/skins available.

  • VxWorks.

  • pSOS.

  • Alchemy (former “native skin”) (we will focus on this one).

Documentation

Rich API.

  • Task management (create, delete, ...).

  • IPC and sync:

    • message queues, semaphores, mutex, ...

  • Alarms.

  • Condition variables.