Notes - MIECT
Redes E Sistemas Autónomos
Notes - MIECT
Redes E Sistemas Autónomos
  • Redes e Sistemas Autónomos
  • Peer-to-Peer Systems and Networks
    • Content Distribution Networks
    • Peer-to-peer networks
      • Types
    • Structured vs Unstructured
    • Fully Decentralized Information System
    • FastTrack/KaZaA
    • OpenNAP/Napster
    • BitTorrent
  • InterPlanetary File System (IPFS)
    • IPFS
      • Bitswap
    • Connecting an IPFS node to the P2P network
    • Searching in DHTs (Structured)
    • File Search
    • Security
  • Ad-Hoc Networks
    • Mobile Ad-hoc networks
    • Application Scenarios
    • Routing
      • AODV - Ad Hoc On-Demand Distance Vector Routing
      • OLSR - Optimized Link State Routing Protocol
      • LAR – Location Aided Routing
      • Batman
    • IP Address Assignment
  • Self-organized systems: Data, learning and decisions
    • Use Cases and Data
    • Machine Learning
      • Supervised Learning
      • Neural Networks
      • Reinforcement Learning
      • Unsupervised Learning: K-means
    • Learning
  • Vehicular Networks
    • Vehicular Ad Hoc Networks
    • How do they work?
    • SPAT: Signal Phase And Timing
    • MAP: MAP
    • Manoeuvre Coordination Message (MCM)
    • Communication Technologies
  • QoS and Security
    • TCP- and UDP-based applications
      • TCP-Cubic
    • QUIC
    • TCP-Vegas
    • Classification of Transport protocols
    • Exploiting Buffering Capabilities
    • QoS in UDP: trade-offs
    • Transmission Quality (Batman v.3)
    • QoS-OLSR
    • Security
      • Key Management
      • RSA (Rivest-Shamir-Adleman) Key
      • Key Management in ad-hoc networks
      • Self-organized public key management (SOPKM)
      • Self-securing ad-hoc wireless networks (SSAWN)
Powered by GitBook
On this page
  • Example RSA
  • Use of RSA
  1. QoS and Security
  2. Security

RSA (Rivest-Shamir-Adleman) Key

Each user generates the pair public/private key.

Randomly generates 2 large prime numbers - p, q.

Calculates the modulus of the system N=p.q.

  • ø(N)=(p-1)(q-1)

Selects a random key e

  • Where 1<e<ø(N), gcd(e,ø(N))=1 gcd = greatest common divisor.

Solves the equation to find the key and deciphers d.

  • e.d=1 mod ø(N) and 0≤d≤N

Publishes the public key: KU={e,N}.

Maintains the private key to decipher: KR={d,p,q}.

Example RSA

  1. Selects prime numbers: p=17 & q=11.

  2. Calculates n = pq =17×11=187.

  3. Calculates ø(n)=(p–1)(q-1)=16×10=160.

  4. Selects e : gcd(e,160)=1; chooses e=7

  5. Determines d: de=1 mod 160 and d < 160: value is d=23 because 23×7=161= 160+1

  6. Publishes public key KU= {e,N}={7,187}.

  7. Maintains secret key KR={d,p,q} = {23,17,11}

Use of RSA

To cipher the message M, the sender:

  • Obtains a public key of the receiver KU={e,N}.

  • Calculates: C=Me mod N, where 0≤M<N.

To decipher C:

  • Uses its private key KR={d,p,q}.

  • Calculates: M=Cd mod N.

Message M has to be lower than the modulus N

  • Message M = 88 (88<N=187).

  • Cipher: C = 887 mod 187 = 11 ; e=7.

  • Decipher: M = 1123 mod 187 = 88 ; d=23.

PreviousKey ManagementNextKey Management in ad-hoc networks

Last updated 1 year ago