Notes - MIECT
Redes E Sistemas Autónomos
Notes - MIECT
Redes E Sistemas Autónomos
  • Redes e Sistemas Autónomos
  • Peer-to-Peer Systems and Networks
    • Content Distribution Networks
    • Peer-to-peer networks
      • Types
    • Structured vs Unstructured
    • Fully Decentralized Information System
    • FastTrack/KaZaA
    • OpenNAP/Napster
    • BitTorrent
  • InterPlanetary File System (IPFS)
    • IPFS
      • Bitswap
    • Connecting an IPFS node to the P2P network
    • Searching in DHTs (Structured)
    • File Search
    • Security
  • Ad-Hoc Networks
    • Mobile Ad-hoc networks
    • Application Scenarios
    • Routing
      • AODV - Ad Hoc On-Demand Distance Vector Routing
      • OLSR - Optimized Link State Routing Protocol
      • LAR – Location Aided Routing
      • Batman
    • IP Address Assignment
  • Self-organized systems: Data, learning and decisions
    • Use Cases and Data
    • Machine Learning
      • Supervised Learning
      • Neural Networks
      • Reinforcement Learning
      • Unsupervised Learning: K-means
    • Learning
  • Vehicular Networks
    • Vehicular Ad Hoc Networks
    • How do they work?
    • SPAT: Signal Phase And Timing
    • MAP: MAP
    • Manoeuvre Coordination Message (MCM)
    • Communication Technologies
  • QoS and Security
    • TCP- and UDP-based applications
      • TCP-Cubic
    • QUIC
    • TCP-Vegas
    • Classification of Transport protocols
    • Exploiting Buffering Capabilities
    • QoS in UDP: trade-offs
    • Transmission Quality (Batman v.3)
    • QoS-OLSR
    • Security
      • Key Management
      • RSA (Rivest-Shamir-Adleman) Key
      • Key Management in ad-hoc networks
      • Self-organized public key management (SOPKM)
      • Self-securing ad-hoc wireless networks (SSAWN)
Powered by GitBook
On this page
  • Flooding vs. DHTs
  • Recall
  • Query Complexity
  • Query Performance
  • Hybrid Search
  1. InterPlanetary File System (IPFS)

File Search

Flooding vs. DHTs

Recall

  • Flooding can miss files.

  • DHTs should never.

Query Complexity

  • Flooding can handle arbitrary single-site logic.

  • DHTs can do equijoins, selections, aggregates, etc.

    • But not so good at fancy selections like wildcards.

Query Performance

  • Flooding can be slow to find things and uses lots of bandwidth.

  • DHTs: expensive to publish documents with lots of terms.

  • DHTs: expensive to intersect really long-term lists.

    • Even if the output is really small!

Hybrid Search

PreviousSearching in DHTs (Structured)NextSecurity

Last updated 2 years ago