Notes - MIECT
Sistemas De Operação
Notes - MIECT
Sistemas De Operação
  • Sistemas de Operação
  • Processes in Unix/Linux
    • Process
    • Multiprocessing vs. Multiprogramming
    • Processes in Unix
    • Execution of a C/C++ program
  • Introduction to operating systems
    • Global view
    • Evolution of computational systems
    • Key topics
  • Semaphores and Shared memory
    • Concepts
    • Semaphores
    • Shared memory
    • Unix IPC primitives
  • Threads, mutexes and condition variables in Unix/Linux
    • Threads
      • In linux
    • Monitors
    • Unix IPC primitives
  • Processes
    • Process
      • Diagrams
    • Process control table
    • Context switching
    • Threads
  • Processor Scheduling
    • Processor Scheduler
    • Short-term processor scheduler
    • Scheduling algorithms
    • Scheduling criteria
    • Priorities
    • Scheduling policies
      • In Linux
  • Interprocess communication
    • Concepts
    • Philosopher dinner
    • Access primitives
      • Software solutions
      • Hardware solutions
    • Semaphores
    • Monitors
    • Message-passing
    • Unix IPC primitives
  • Deadlock
    • Introduction
    • Philosopher dinner - Solution 1
      • Deadlock prevention
    • Philosopher dinner - Solution 2
      • Deadlock prevention
    • Philosopher dinner - Solution 3
      • Deadlock prevention
    • Philosopher dinner - Solution 4
    • Deadlock avoidance
    • Deadlock detection
  • Memory management
    • Introduction
    • Address space
    • Contiguous memory allocation
    • Memory partitioning
    • Virtual memory system
    • Paging
    • Segmentation
    • Combining segmentation and paging
    • Page replacement
      • Policies
    • Working set
    • Thrashing
    • Demand paging vs. preparing
Powered by GitBook
On this page
  1. Deadlock
  2. Philosopher dinner - Solution 3

Deadlock prevention

Denying the necessary conditions

Denying the circular wait condition can be done by assigning a different numeric id to every resource and imposing that resource acquisition must be done either in ascending or descending order.

  • This way the circular chain is always avoided.

  • Starvation is not avoided.

In the dining-philosopher problem, this can be done imposing that one of the philosophers acquires first the right fork and then the left one.

PreviousPhilosopher dinner - Solution 3NextPhilosopher dinner - Solution 4

Last updated 2 years ago