Notes - MIECT
Sistemas De Operação
Notes - MIECT
Sistemas De Operação
  • Sistemas de Operação
  • Processes in Unix/Linux
    • Process
    • Multiprocessing vs. Multiprogramming
    • Processes in Unix
    • Execution of a C/C++ program
  • Introduction to operating systems
    • Global view
    • Evolution of computational systems
    • Key topics
  • Semaphores and Shared memory
    • Concepts
    • Semaphores
    • Shared memory
    • Unix IPC primitives
  • Threads, mutexes and condition variables in Unix/Linux
    • Threads
      • In linux
    • Monitors
    • Unix IPC primitives
  • Processes
    • Process
      • Diagrams
    • Process control table
    • Context switching
    • Threads
  • Processor Scheduling
    • Processor Scheduler
    • Short-term processor scheduler
    • Scheduling algorithms
    • Scheduling criteria
    • Priorities
    • Scheduling policies
      • In Linux
  • Interprocess communication
    • Concepts
    • Philosopher dinner
    • Access primitives
      • Software solutions
      • Hardware solutions
    • Semaphores
    • Monitors
    • Message-passing
    • Unix IPC primitives
  • Deadlock
    • Introduction
    • Philosopher dinner - Solution 1
      • Deadlock prevention
    • Philosopher dinner - Solution 2
      • Deadlock prevention
    • Philosopher dinner - Solution 3
      • Deadlock prevention
    • Philosopher dinner - Solution 4
    • Deadlock avoidance
    • Deadlock detection
  • Memory management
    • Introduction
    • Address space
    • Contiguous memory allocation
    • Memory partitioning
    • Virtual memory system
    • Paging
    • Segmentation
    • Combining segmentation and paging
    • Page replacement
      • Policies
    • Working set
    • Thrashing
    • Demand paging vs. preparing
Powered by GitBook
On this page
  1. Memory management

Thrashing

Consider that the maximum number of frames assigned to a process is fixed.

If this number is always greater or equal to the number of pages of the different working sets of the process:

  • the process’s life will be a succession of periods with frequent page faults with periods almost without them.

If it is lower.

  • the process will be continuously generating page faults.

  • in such cases, it is said to be in thrashing.

Keeping the working set of a process always in memory is a page replacement design challenge.

PreviousWorking setNextDemand paging vs. preparing

Last updated 2 years ago