Notes - MCS
Secure Execution Environments
Notes - MCS
Secure Execution Environments
  • Secure Execution Environments
  • Introduction
    • Trusted Computing Base (TCB)
    • TEE (Trusted Execution Environment)
    • Can you trust the operating system?
  • Security in Operating Systems
    • Operating system
    • Virtual machines and hypervisors
    • Computational model
    • Access control
    • Protection with capabilities
    • Unix file protection ACLs
    • Windows NTFS file protection
    • Unix file protection ACLs
    • Privilege elevation
    • Privilege reduction
    • Linux login
  • Virtualization on Intel Processors
    • Modes of Operation
    • Virtual memory
    • How to put assembly instructions inside C code
    • A more elaborate example
    • Useful assembly instructions
  • Intel Software Guard Extensions
    • What is SGX (Software Guard eXtensions)?
    • SGX Enclave Memory
    • Guidelines for designing applications using SGX
    • Performance Overhead
    • SDK compilation modes
    • Writing Enclave Functions
  • ARM TrustZone
    • SoC and IP
    • ARM TrustZone
    • Worlds
    • Architecture
    • TrustZone bootstrap
  • Linux Kernel Namespaces
    • Namespaces
    • Advantages
    • Process Namespace
    • Network namespace
    • Mount namespace
    • UTS namespace
    • User namespace
  • LXC Linux Containers
    • Container
    • LXC containers
  • AppArmor
    • Purpose
    • Enforcement
    • Benefits
    • Attack prevention
    • Enforcement policies
    • Enforcement modes
    • Logging and auditing
    • Profiles
  • TPM (Trusted Platform Module)
    • Trusted Platform Module (TPM)
    • History
    • Cryptographic Concepts
    • Use cases
    • TPM Software Stack (TSS)
    • TPM concepts
    • Entities
    • Key management
    • Restrict signatures
    • Sessions
    • Authorization roles
  • Bootstrap security
    • AEGIS
    • Trusted computing
    • Root of Trust Measurements
    • Trusted Computing Platform Alliance (TCPA)
    • TPM-based attestation
    • Trusted Platform identity credentials
    • UEFI (Unified Extensible Firmware Interface)
    • NSA Boot Security
    • UEFI secure boot & TPM measurements
    • Intel Trusted Execution Technology (TXT)
    • Smartcards
      • Java Cards
      • OpenCard Framework (OCF)
      • Cryptographic services
Powered by GitBook
On this page
  1. Linux Kernel Namespaces

Process Namespace

Last updated 11 months ago

Process namespaces isolate the process ID number space, meaning that processes in different PID namespaces can have the same PID.

Process namespaces allow containers to provide functionality such as suspending/resuming the set of processes in the container and migrating the container to a new host while the processes inside the container maintain the same PIDs.

PIDs in a new PID namespace start at 1, somewhat like a standalone system, and calls to fork or clone will produce processes with PIDs that are unique within the namespace.

UNIX processes form a parent-child tree.

  • Process identifiers (PIDs) are global.

The process namespace creates nested trees.

  • Processes within inner namespaces cannot access processes of outer namespaces by their PID.

A process can have many PIDs.

  • One for each namespace it belongs.