Notes - MCS
Computer Systems Forensic Analysis
Notes - MCS
Computer Systems Forensic Analysis
  • Computer Systems Forensic Analysis
  • Overview of Cybercrime
    • Cyberspace
    • Information Security Principles
    • Cybercrime vs. Computer Crime
    • Cybercrime slang
      • Images
    • Digital Evidence
  • Introduction to Digital Forensics
    • Concepts
    • Digital Forensic
    • Digital Investigation
    • Digital Crime Scene Investigation Methodology
    • Digital Evidence Handling
    • Ethical Code
  • Obtaining Evidences
    • Introduction
    • Boot Process
    • Secuere Boot Process
    • Windows Boot Process
    • Forensic Boot Tools
    • Bootable CD-ROMS - Linux Based
    • ADS
    • Forensic Sorting Tools
    • Forensic Acquisition
    • Dealing With Media Errors
    • Hidden Areas
    • Write Protection of Evidence Media
    • Storing Acquired Data
    • Image File Acquisition
    • Hash Values
  • Data Organization
    • Data Organization
    • File System
    • File Content
    • Endianness
    • Character Encoding
    • Data Structures
    • Date and Time
    • Encoding
  • Storage Devices
    • BIOS versus direct access
    • Hard Disk Geometry
    • Advanced Technology Attachment Interface
      • Device Configuration Overlay
    • Small Computer Systems Interface
    • NAND Flash memory
    • Level wearing
    • HDD vs SSD
    • Pen USB vs SSD Comparison
    • SSD Connectors, Interfaces, and Transfer Protocols
  • Volumes and Partitions
    • Concepts
    • Partition Tables
    • Sectors Addresses
    • Logical addresses
    • Volume Analysis
    • Types of Partition Tables
    • Common Partition Tables (MBR)
    • Boot Code
    • MBR examination
    • Removable Storage
    • Common Partition Tables (GPT)
    • Common Partition Tables (BSD)
    • Volumes’ Aggregation
  • RAM Analysis
    • RAM Analysis
    • General Computer Architecture
    • DMA – Direct Memory Access
    • Paging
    • Memory Acquisition
  • Mobile Forensics
    • Forensic value of phones
    • International Mobile Equipment Identifier
    • Potential Evidence
    • Forensics Dangers
    • Data Acquisition
    • Logical acquisition
    • Physical acquisition
    • Hashing
    • Software tools
  • Open Source INTelligence
    • Classical sources of information and intelligence
    • Evolution of OSINT - Open Sources Intelligence
    • Information sources
    • Closed source of information
    • Open sources
    • Information to Intelligence Cycle
    • Skills of the Analyst
    • Open Source Possibilities
    • Automated Processing
    • DarkNet
  • Documentation and Reporting
    • Introduction
    • Physical examination
    • Examining a computer
    • Media Examination
    • Examples of things to write in the report
    • Forensic Report
Powered by GitBook
On this page
  • Live Analysis
  • Post-mortem analysis
  • Examples
  1. Introduction to Digital Forensics

Digital Investigation

Live Analysis

When the operating system or other resources of the system being investigated is used to find evidence.

  • advantages: get data from RAM of a running process

  • disadvantages: risk of getting false information because the software could maliciously hide or falsify data.

Post-mortem analysis

When trusted applications in a trusted operating system are used to find evidence (lab environment).

  • advantages: fully controlled environment.

  • disadvantages: information from RAM is lost, e. g. key to decrypt a file, ...

A post-mortem analysis is more ideal, but not always possible.

Examples

A server has been compromised, how it occurred and who did it?

  • Find data that were created by events related to the incident recover deleted log entries from the server.

  • Find attack tools.

  • Find the vulnerabilities that existed on the server.

  • Using this data, and more, we develop an hypotheses.

    • Which vulnerability the attacker used to gain access.

    • What he/she did afterwards.

  • Later, examine the firewall configuration and logs.

    • Determine that some of the scenarios in our hypotheses are impossible because that type of network traffic could not have existed.

    • Evidence was found that refutes one or more hypotheses.

Last updated 1 year ago