Notes - MCS
Robust Software
Notes - MCS
Robust Software
  • Robust Software
  • Secure Software Design Principles
    • Motivation
    • Secure and Resilient/Robust Software
    • Best Practices for Resilient Applications
    • Designing Applications for Security and Resilience
    • Architecture for the Web/Cloud
  • Software Security Lifecycle
    • Motivation
    • Secure Development Lifecycle
    • Software Security Touchpoints
    • Software Assurance Forum for Excellence in Code (SAFECode)
    • Secure SW Lifecycle Processes Summary
    • Adaptations of the Secure Software Lifecycle
    • Assessing the Secure Software Lifecycle
    • Recommendations
  • Software Quality Attributes
    • Motivation
    • Software Quality Assurance
    • Software Quality Standards
    • Software Quality Attributes
    • Extra Software Quality Assurance Properties
  • Security Requirements
    • Motivation
    • Security Requirements
    • Threats
    • Defenses
    • Confidentiality
    • Integrity
    • Availability
    • What about other goals/properties?
    • Security Requirements Engineering
    • Types of Security Requirements
    • Security Policy
    • Precision
    • Completeness and Consistency
    • Examples of Non-Functional Requirements
    • Goals and Requirements
    • Measures
    • Requirements Interaction
    • Natural Language Requirements
    • Best Practices
  • Common Software Attacks
    • Objectives
    • 10 Major Cyber-Attacks of 21st Century
    • Software Security Basics
    • Defenses Methods
    • SANS SWAT Checklist
  • Safe Programming
    • Secure Coding Practices
    • Top 10 Secure Coding Practices (CERT/SEI)
    • 7 Pernitious Kingdoms
  • Robustness, PenTest, Fuzzy and Static Code Analysis
    • Security/Robustness Testing
    • Robustness Tests Checklist Example
    • Penetration Testing
    • Penetration Testing Roadmap
    • Tools
    • Fuzz Testing
    • Static Code Analysis
    • Side Channels
  • Safety (and Security)
    • Safety
    • A safety Lifecycle Example
    • Risk Management Process
    • System Definition
    • Hazard Identification and Classification
    • Desk-based Hazard Identification
    • Workshop-based Hazard Identification
    • HAZOP
    • Hazard Identification and Classification
      • Broadly acceptable risks
    • Risk Evaluation and Risk Acceptance
    • Use of codes of practice
    • Use of reference system
    • Explicit risk estimation
    • Qualitative risk estimation
    • Quantitative risk estimation
    • Safety measures
    • Safety requirements
    • Hazard Management
    • Hazard life cycle
    • Independent Assessment
    • Safety Plan
    • Safety Case
    • FMEA Example
    • DevSecOps
Powered by GitBook
On this page
  1. Robustness, PenTest, Fuzzy and Static Code Analysis

Side Channels

A side-channel attack is an attack based on information gained from knowledge of the physical implementation of a system (process), rather than theoretical weaknesses in the algorithms.

Similar to covert channels, information is leaked unintentionally.

  • For example, access to a shared resource.

A covert channel is a mechanism used to transmit info using methods not originally intended for data transmission (unauthorized and hidden).

System and Network channels (unintentional or provoked by):

  • Heat, Cold, Low Power, Microwaves, …

Examples:

  • Fault Attacks;

  • Timing Attacks;

  • Cache Attacks;

  • Power Analysis;

  • Electromagnetic Emissions;

  • Acoustic Emissions;

  • Information Disclosure.

Side channels allow an attacker to infer information about a secret by observing nonfunctional characteristics of a program, such as execution time or memory consumed.

Recall that a program can be viewed as a communication channel where information is transmitted from a source H to a sink O. For side-channel analysis, the sink O is not necessarily an output variable but rather a nonfunctional characteristic of program execution, such as running time, power consumption, number of memory accesses or packets transmitted over a network.

Last updated 1 year ago